Problem 1.29

Find a differential equation having the general solution $y=c_{1}\left(x+c_{2}\right)^{n}$.

Solution

There are two constants of integration, c_{1} and c_{2}, so we expect the differential equation to be second order. Take two derivatives of the solution.

$$
\begin{aligned}
y & =c_{1}\left(x+c_{2}\right)^{n} \\
y^{\prime} & =c_{1} n\left(x+c_{2}\right)^{n-1}=\frac{c_{1} n\left(x+c_{2}\right)^{n}}{x+c_{2}} \\
y^{\prime \prime} & =c_{1} n(n-1)\left(x+c_{2}\right)^{n-2}=\frac{c_{1} n(n-1)\left(x+c_{2}\right)^{n}}{\left(x+c_{2}\right)^{2}}
\end{aligned}
$$

The equation for $y^{\prime \prime}$ will ultimately be our differential equation. Use the equations for y and y^{\prime} to eliminate c_{1} and c_{2} with substitution. We'll use y to eliminate c_{1} first.

$$
\begin{aligned}
y^{\prime} & =\frac{n y}{x+c_{2}} \\
y^{\prime \prime} & =\frac{n(n-1) y}{\left(x+c_{2}\right)^{2}}
\end{aligned}
$$

Now use y^{\prime} to eliminate c_{2}.

$$
y^{\prime}=\frac{n y}{x+c_{2}} \quad \rightarrow \quad \frac{y^{\prime}}{n y}=\frac{1}{x+c_{2}} \quad \rightarrow \quad\left(\frac{y^{\prime}}{n y}\right)^{2}=\frac{1}{\left(x+c_{2}\right)^{2}}
$$

So we have

$$
y^{\prime \prime}=n(n-1) y \cdot \frac{\left(y^{\prime}\right)^{2}}{n^{2} y^{2}} .
$$

Therefore, the differential equation that has the general solution, $y=c_{1}\left(x+c_{2}\right)^{n}$, is

$$
y^{\prime \prime}=\frac{n-1}{n} \cdot \frac{\left(y^{\prime}\right)^{2}}{y} .
$$

